If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2+20z+1=8
We move all terms to the left:
3z^2+20z+1-(8)=0
We add all the numbers together, and all the variables
3z^2+20z-7=0
a = 3; b = 20; c = -7;
Δ = b2-4ac
Δ = 202-4·3·(-7)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-22}{2*3}=\frac{-42}{6} =-7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+22}{2*3}=\frac{2}{6} =1/3 $
| 6(x+8)+3=10x-4(x-4) | | 5f/8=1 | | (x-6)^2-(8)=0 | | 5x+3+3x-1=90 | | 4(x+1)-3(x-1)=9x-5(2x+3) | | 12n+60=60+3n | | 8-1/7x=-19 | | 8x+11+6x+1=180 | | 4(2x+10-7(1+7x)=-90 | | -2/3v=-14 | | 10x=-31 | | F(x)=-3x^2-2x+7 | | 3(4x/7)=10x-7 | | 12n+60=60n+3n | | (3x)+(4x-20)+(x+40)=180 | | 2X=9-7y | | 24=2x+2x+(x+3)+(x+3) | | (x-6)^2=8 | | 2/3(x-5)=1/4(x+20) | | 9x-4x+60=10x | | 5x-3+9-6=7x+7x+9 | | 4(x+12)=x+12 | | 24=k(6) | | -x÷8=-2 | | 24=k6 | | 3-4(x-1)=2+(x=3) | | 9(2x+3)^2-25(2x+3)+16=0 | | 2x/5+5=10 | | 2/3v=2 | | 13x-51=x | | -(1/4w+8)+8=3 | | 15+u-22=9^2 |